
RD-AI61 236 NAVY MILITARY STANDARDS FOR TECHNICAL SOFTNAEE v/1
DOCUMENTATION OF EMBEDDED TACTICAL SYSTEMS, A CRITICAL
REYIEW(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA N

UNCLASSIFIED H C LYON SEP 85 F/0 9/4 M

r

111111(1 46 * 2 2.
L 136 III

1111111112.0

1~II.8
11111.25 -1114 111

MICROCOPY RESOLUTION TEST CHART
NATIONAL. OLPEA0OF STANOARDS-963 -

. ..

NAVAL POSTGRADUATE SCHOOL
Monterey, California

N

CoF

I-

THESIS ll
NAVY MILITARY STANDARDS FOR

TECHNICAL SOFTWARE DOCUMENTATION OF
EMBEDDED TACTICAL SYSTEMS;

A CRITICAL REVIEW

0 - by

CHarvey Channing Lyon

September 1985

Thesis Advisor: Gordon H. Bradley

. Co-advisor: Carl R. Jones

Approved for public release; distribution unlimited

.o

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Ifte Dae IEnere_

REPOT DOUMENATIO PAG READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. ftCIPIENT*S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Navy Military Standards for Master's Thesis
Technical Software Documentation of September 1985
Embedded Tactical Systems; 6. PERFORMING ORG. REPORT NUMBER

A Critical Review .
7. AUTHOR(e) I. CONTRACT OR GRANT NUMBER(#)

Harvey Channing Lyon
9. PERFORMING ORGANIZATION NAME AND ADODRESS 10. PROGRAM ELEMENT. PROJECT, TASK

AftEA & WORK UNIT NUMUIERS

Naval Postgraduate
School

Monterey, CA 93943-5100

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Postgraduate School September 1985
Monterey, CA 93943-5100 6. NUMBER OF PAGES65

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlllng Office) IS. SECURITY CLASS. (of this report)

ISO. OECLASSIFICATION, DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution is unlimited

17. DISTRIBUTION STATEMENT (of the abotract entered In Block 20, If different frou Report)

ISI. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on revetse etde if neceeeery nd Identify by block number)

Software Documentation
Documentation
DOD-STD-1679A (Navy)

* Software Life-cycle

'20. ABSTRACT (Continue on r..erev o * It .*cI*ne..,ry and Identify by block number)

This thesis critically reviews the Navy's embedded

tactical software development methodology as defined in

DOD-STD-1679A(Navy). The emphasis of the thesis is on the
documentation produced as a result of following that
methodology. Both the development methodology, and the
documentation produced are compared to management and
content recommendations provided by the National Bureau

(continued)

* DD ,FONA, 1473 ED, TION OF INOV IIIS OSOLETI UNCLASSIFIED
N 0102- L

- 014-5601 1 SECURITY CLASSIFICATION OR TNIS PAGIE (Ihen D oet Entrero)

UNCLASSIFIED
SCCuNITV CLASSIrCATIOW OF THIS PAG9 (Ohm 018I Wl 04

-of Standards and academic/commercial publications. The
conclusion reached is that DOD-STD-1679A(Navy) is
adequate for its purpose. However problems in documentation

i* develop as a result of management's misinterpretation
of the phased life-cycle development methodology
described in DOD-STD-1679A(Navy) and the importance
of a continous documentation effort.

2 UNCLASSIFIED
SgeUrNIT CLASSIFICAIOW OF THIS PAGt(~hen Data Eanewe,)

Approved for public release; distribution is unlimited.

Navy Military Standards for
Technical Software Documentation of

Embedded Tactical Systems;
A Critical Review

by

Harvey Channinq Lyon

Lieutenant, United States Navy
B.S., United States Naval Academy, 1979

Submitted in partial fulfilment of the
requirements for the deqree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
September 1985

Author:

Approved by:

'."Gordon H. adle esis Co-Advisor

arl R J ,Thesis Co-Advisor

-llis R. reer, Chairman of
Administra ive Sciences

K. ~~Kneale T. Mar Denf!-.Information and Poli'S sciences

" 3

ABSTRACT

This thesis critically reviews the Navy's embedded

tactical software development methodoloqy as defined in DOD-

STD-1679A(Navy). The emphasis of the thesis is on the

documentation produced as a result of followinq that

methodoloqy. Both the development methodoloqy, and the

documentation produced are compared to manaqement and

content recommendations provided by the National Bureau of

Standards and academic/commercial publications. The

conclusion reached is that DOD-STD-1679A(Navy) is adequate

for its purpose. However problems in documentation develop

as a result of manaqement's misinterpretation of the phased

life-cycle development methodoloqy described in DOD-STD-

1679A(Navy) and the importance of a continous documentation

effort.

4

..
.

TABLE OF CONTENTS

I. INTRODUCTION-- 7

II. SOFTWARE DOCUMENTATION, WHAT IS IT?------------------ 12

A. THE SOFTWARE LIFE-CYCLE--------------------------- 12

Et. DOCUMENTATION WITHIN THE SOFTWARE LIFE-CYCLE -- 19

C. TECHNICAL DOCUMENTATION GOALS-------------------- 23

Ill. NAVY TECHNICAL DOCUMENTATION------------------------- 26

A. THE NAVY TACTICAL SOFTWARE LIFE-CYCLE------------ 28

B. NAVAL TECHNICAL SOFTWARE DOCUMENTATION
REQUIREMENTS--------------------------------------- 31

IV. NAVAL DOCUMENTATION, PROBLEMS AND SOLUTIONS---------- 46

A. NAVAL DOCUMENTATION, HOW DOES IT STACK UP--------48

B. NAVAL DOCUMENTATION, THE PROBLEM AND------------- 51
AND CAUSES

C. DOCUMENTATION, A SOLUTION IN ITSELF------------- 54

V. SUMMARY OF CONCLUSIONS-------------------------------- 60

LIST OF REFERENCES--- 64

INITIAL DISTRIBUTION LIST----------------------------------- 65

SFor -

...

.

.11 1 7. .1)o

. .

ACKNOWLEDGEMENTS

-'€ I wish to thank Dr. Gordon Bradley and Dr. Carl Jones of

the Naval Postqraduate School for their direction and

assistance in writinq this thesis. Also I wish to thank Jim

Raeqan of the Naval Surface Weapons Center for his time,

instruction, and enthusiasm in discussinq the problems he

has experienced in developinq software for naval tactical

systems. Additionally I wish to thank my father for his time

spent in establishinq contacts and collectinq material for

this thesis. There were many individuals that provided their

time and insiqht for interviews without which this thesis

would not have been possible. Althouqh these individuals are

too many to name, I wish to say thank you.

6

.. .- -; -.,. . - -- --. . ,~ . , * . .w,-. - - - -_ _

7-7-7 1k -3- -W

I. INTRODUCTION

The past ten years has seen much written on the improved

methods of software development, top-down desiqn, bottom-up

testinq, modular decomposition, structured proqramminq,

stepwise refinement and other related subjects. Even more

recently, with the risinq costs of maintenance, and the

rapidly increasinq functional requirements for the software

beinq developed, the need for excellent documentation of

software projects has become apparent with many articles

addressinq this issue. The most modern software development

methodoloqies provide for this required documentation,

addressinq areas such as feasibility studies, requirements

analysis, proqram performance specifications, test

requirements, commented codes data flow diaqrams, data

dictionaries, interface specifications, and the like. A

major purpose of these methodoloqies is to allow software

developed by multiple people to stand independent of the

individual. That is, to provide a method that captures the

process used and the product produced by a qroup of

individuals in a manner such that another qroup of

individuals may understand the product produced and the

process used to produce it without requirinq further

communication with the oriqinal qroup.

7

The Navy, with its extremely automated combat and

enqineerinq systems is like any other software

producinq/consuminq firm and is one of the larqest in the

cateqory of tactical real-time systems and enqineerinq

control systems. With software development and maintenance

costs of naval tactical systems totalinq in the billions of

dollars annually, even a relatively small improvement in

software development efficiency has an immense potential for

a siqnificant reduction in the cost of a system's

development. As a consequence, the Navy has continually

updated their Military Standards for Software Development

(DOD-STD-1679A).

This thesis compares the recommended software

development methodoloqies of the commercial and academic

fields, and those recommended by the National Bureau of

Standards with those presently in use by the Navy. The main

emphasis is on the documents qenerated in these

methodoloqies and the documentation process.

In this thesis the term "software" will be used as

defined by Fairley [Ref. l:p. 6] to mean the source code and

all the associated documents and documentation that

constitute the software product. Requirements documents,

desiqn specifications, source codes test plans, quality

assurance and confiquration manaqement procedures, software

trouble reports, etc., all constitute components of the

software product and are included in the term "software".

p •3

"Documentation" will be defined as a description of the

characteristics of an entity or process recorded for the

purpose of transferrinq information about that entity or

process. For the purposes of this thesis "documentation"

will also include descriptions of intent or requirements

such as the information within a computer proqram

development plan, or a proqram requirements specification.

The term "documentation process" will refer to the

methodoloqy used to collect and explain the associated

characteristics.

The term "documentation leve'", or level of

documentation will refer to the amount of detailed

information the documentation records about the entity or

process in relation to the total amount of information that

ever was available about the entity or process. The more

information recorded in the documentation, the hiqher the

level of the documentation.

"Document" will refer to the instrument used to

transport the documentation from one individual to another,

or from one qroup of individuals to another. Documents are

produced to provide a medium with which documentation can be

transferred.

In the process of writinq this thesis, interviews were

conducted with various key individuals experienced in Navy

surface tactical embedded computer system desiqn projects.

These interviews were non-statistical in nature. The purpose

. .. 9

.

of these interviews was to provide experienced opinions and

feelinqs on problems and causes evident in past and present

development efforts. Additionally, this thesis only views

those practices in use in the Naval Sea Systems Command,

other commands within the Navy may have different

definitions and methodoloqies. This thesis is not meant to

apply to those commands.

The DDG-51 (AEGIS class destroyer) combat system desiqn

effort was used as the example software development project.

This particular project was chosen because it reflects the

efforts of an experienced desiqn team (many of the team

members were associated with the CG-47 desiqn effort), and

has adequate fundinq. Additionally, this project is

relatively new (the computer proqram development plan was

printed in January 1985) and had the opportunity to take

advantaqe of the latest software desiqn methodoloqies.

Chapter II presents suqqested documentation requirements

of the National Bureau of Standards and introduces a typical

software life-cycle. Chapter III explains the Navy's

tactical software life-cycle and the documentation

requirements of DOD-STD-1679A (Navy). Chapter IV compares

the Navy's standards with those recommended in the

commercial/academic field and attempts to offer solutions to

documentation problems expressed to be evident in Naval

tactical software development. Chapter V summarizes th

10

conclusions reached in a method that is meant to serve a

possible "tear out" summary requirement.

.~~~~~ .'** .

II. SOFTWARE DOCUMENTATION WHAT IS IT?

This section defines "software enqineerinq" as used in

this thesis and introduces the software life-cycle concept

by describinq three models sometimes used to represent

different concepts of the software life-cycle. This section

also presents some document and documentation

recommendations throuqh the use of the life-cycle models

they are associated with, and presents the qoals or

reasoninq behind the technical documentation process and the

documents produced.

A. THE SOFTWARE LIFE-CYCLE

Barry Boehm [Ref. 2:p. 163 defines software enqineerinq

as "the application of science and mathematics by which the

capabilities of computer equipment are made useful to man

via computer proqrams, procedures, and associated

documentation". Fairley [Ref. l:p. 23 defines software

enqineerinq as "the technoloqical and manaqerial discipline

concerned with systematic production and maintenance of

software products that are developed and modified on time

and within cost estimates".

Within the context of this thesis it is sufficient to

define software enQineerinQ to be the technoloQical and

manaqerial discipline concerned with the systematic

12

.. ," .- € ,-"-"- " ¢,-- " -

production and maintenance of software keepinq in mind that

software, as defined earlier, includes the source code and

all associated documents and documentation that constitute

the software product.

Experience in software enoineerinq has tauqht us that it

is extremely important at the start of every software

project to develop a model of the life-cycle of the

particular software product. As Fairley states [Ref. l:p.

373: "A life-cycle model that is understood and accepted by

all concerned parties improves project communication and

enhances project manaqeability, resource allocation, cost

control, and project quality."

The model must be developed specifically for the project

at hand, however many qeneric models are available, that

with minor modifications are usually well suited for the

software project.

Perhaps the most basic model and the most traditional is

the phased life-cycle model often described with the

waterfall chart of Fiqure 1. Introduced in the early 70'st

but conceptually existant in the mid 60's [Ref. 2:pp. 35-

38], the phased life-cycle model seqments the life cycle

into a series of successive steps or phases. Each phase

requires a well defined input, utilizes a well defined

process, and results in a well defined output that is used

as the startinq point for the subsequent phase.

D13

.

System
ieasrb.hty

va.dal,

Detailed design

Verficaton

.- System test

Ortne, a nd

Fiqure 1: Waterfall Model of the Software Life-cycle
[Ref. 2:p. 36)

The various Phases of the phased life-cycle model are:

1. System Feasibility. Definjnq a preferred concept for
the software product, and determininq its life-cycle

D feasibility and superiority to alternative concepts.

2. Software Plans and Requirements. A complete, validated
specification of the required functions, interfaces,
and performance standards for the software product.

14

3. Product Desiqn. A complete, verified specification of
the overall hardware-software architecture, control
structure, and data structure for the product, alonq
with such other necessary components such as draft
user's manuals and test plans.

4. Detailed Desiqn. A complex, verified specification of

the control structure, data structures, interface
relations, sizinq, key alqorithms, and assumptions for
each proqram component.

5. Codinq. A complete, verified set of the proqram
components.

6. Inteqration. A properly functioninq software product

composed of the software components.

7. Implementation. A fully functioninq operational
hardware-software system, includinq such objectives as
proqram and data conversions, installation and
traininq.

8. Maintenance. A fully functioninq update of the
hardware-software system. This subqoal is repeated for

each update/ modification.

An important aspect of the phased life-cycle model is

that each phase ends with verification or validation.

Validation as it is used here means to make a dedicated

effort to ensure the product of the phase is actually what

was intended to be produced at the beqinninq of the phase.

Informally, validation is "Are we buildinq the riqht

product?". Verification as it is used here refers to a

dedicated effort to ensure that the product or output of the

phase is correct for the input of the phase; Informally,

verification is "Are we buildinq the product riqht?". In a

development desiqn such as the phased life-cycle model that

relies stronqly on the output from one phase as the input to

15

• ,*.

the next phase, the determination of the correctness of the

output before it is used as input is vital to the process.

Verification and validation are planned conscientous efforts

to eliminate errors within the development process.

There are many critics of the phased life-cycle

approach. AmonQ their complaints is that the approach does

not accurately reflect the actual software development

process, that it does not reflect the interaction and

overlap between phases [Ref. l:p. 41]. Nor does the phased

life-cycle approach provide for prototypes, or enhancement

methods. Additionally, if an error is made in the early

staQes, and is missed in the oriqinal validation, the error

will not be evident until the final validation is made after

the system is implemented. The phased life-cycle approach

does not provide a means to alter a project's desiqn once

the implementation phase is reached without a very expensive

repetition of the previous phases. Consequently, if a fatal

problem is uncovered in the validation portion of the

implementation phase of the phased life-cycle approach it is

very expensive to correct.

The beauty of the phased life-cycle approach is its

simplicity. The model is easy to understand, easy to

represent, and allows for the definition of specific

milestones even if they are hard to reach in actual

pract ice.

16

..

Another software life-cycle model is the Prototype Model

shown in Fiqure 2. The model emphasizes the source of

product requests, the major qo/no-Qo decision points, and

the use of prototypes. A prototype is a model or a mockup of

the software product. In contrast to a simulation model, the

prototype model exhibits components of the actual product

althouqh normally at reduced capability or performance

standards [Ref. l:p. 49]. Prototypinq allows desiqners to

explore various technical issues and/or to allow the qradual

development of requirements and performance specifications.

4 ,

Fiqure 2: The Prototype Software Life-cycle Model [Ref.
l:p. 513

17

The approach is useful when there is not a clean set of

system requirements and the possibility of system

requirements chanqinq is hiqh. Prototypes are desiqned to

allow experimentation and chanqe without the expense of full

implementation, and to inexpensively identify the errors

normally present in the first attempt to develop a system.

Critics of the prototypinq method cite the "Let's qo

with the prototype" attitude that never develops the full

system, or the expense involved with larqer systems of

buildinq the system twice. However, when developinq a new

system from the beqinninq, some form of prototypinq is

usually desirable.

Yet another life-cycle model is the iterative

enhancement model. In this model each version is a complete

system that performs useful work. Enhancements are made to

the previous system to add new capabilities as required.

Some minor redesiqn of the previous system may occur to

correct desiqn deficiencies evident in the previous system;

however, the majority of chanqe is in the form of system

enhancements.

As stated earlier, different models exist for different

kinds of projects. Each emphasizes different aspects of the

software life-cycle, and in many cases more than one type of

model is combined to allow the development of a model

specifically tailored to the project at hand. The most

18

important idea to be captured is the need for a life-cycle

model. Such a model should encompass all the activities

required to define, develop, test, deliver, operate, and

maintain a software product. Many models recommend specific

documents be produced at different phases to contain the

documentation suqqested for that phase. No sinqle model is

appropriate for all software products. However dufininq a

model early on in the product development and identifyinq

the planned documents to be produced is essential to the

product's success.

The next section will view some recommended documents

and the documentation contained in these documents as a

function of the life-cycle phases.

B. DOCUMENTATION WITHIN THE SOFTWARE LIFE-CYCLE

Computer proqrams evolve in phases from the time that an

idea to create or modify software occurs throuqh the time

that the software enqineerinq process produces the required

output. Usinq the terminoloqy defined in the National Bureau

of Standards Federal Information Processinq Standards (NBS

FIPS) publications [Ref. 33, the three major phases of the

software project are: the initiation phase, the development

phase, and the operation phase. The three phases, alonq with

their associated sub-phases and suqqested documentation

documents are shown in Fiqure 3. This thesis is concerned

19

• .-.-.-. ..-
*

with the suqqested documentation collected durinq these

phases.

INITIATION OPERATION
PHASE DEVELOPMENT PHASE PHASE

Definition Design Programminr Test
Stage Stage Stage Stage

PROJECT
REOUEST Functional System/ Users
DOCUMENT Requirements Subsystem Manual

Document Specification
FEA SIBILITY

STUDY Program Operations
DOCUMENT Specification Manual

[DNta Data Base Program
COST/SENEFIT cRquircnm.nts Specification Maintenance

ANALYSIS Document Manual
DOCUMENT

Test Plan "'pt Analysis
_Report

Fiqure 3. Documentation Within the Software Life-cycle [Ref.
3 :p. 6)

ProJect Request Document. The purpose of this document

is to provide the means for a user orqanization to request

the development, procurement, or modification of software.

It serves as the initiatinq document in the software life-

cycle, and provides a basis for communication with the

requestinq orqanization to further analyze requirements and

assess impacts. This document is quite often embedded in

another document as a part of a larqer system.

2.')

N .'-

Feasibility Study Document. The purpose of the

feasibility study document is to provide: (1) an analysis of

objectives, requirements and concepts; (2) to evaluate

alternative approaches; and (3) to identify the proposed

solution and the justifyinq arquments that make this the

most attractive alternative . This document, combined with

the cost/benefit analysis document, should provide

manaqement with the required information to make an informed

decision on whether or not to continue the project.

Cost/Benefit Analysis. The purpose of this document is

to provide manaqers, users, desiqners, and auditors with

adequate cost and benefit information to analyze different

alternatives from the standpoint of the cost and benefit

tradeoffs.

Functional Requirements Document. The purpose of this

document is to provide a basis for a mutual understandinq

between all concerned parties about the results of the

initial definition staqe of the software, includinq the

requirements, operatinq environment, and development plan.

Data Requirements Document. The purpose of this document

is to provide, durinq the definition staqe, a data

description and technical information about data collection

requirements.

System/Subsystem Specification. The purpose of this

document is to specify for analysts and proqrammers the

requirements, operatinq environment, desiqn characteristics,

"21

and proqram specifications (if desired) for a

system/subsystem.

Program Specification. The purpose of this document is

to specify for proqrammers the requirements, operatinq

environment, and desiqn characteristics of the computer

proqram.

Data Base Specification. The purpose of this document is

to specify the identification, loqical characteristics, and

physical characteristics of a particular database.

User's Manual. The purpose of this document is to

sufficiently describe the functions performed by the

software in a fashion that all users of the system miqht be

able to understand (that is it uses non-ADP terminoloqy).

Operations Manual. The purpose of this document is to

provide computer operations personnel with a description of

the software and of the operational evironment so that the

software may be run properly.

SProqram Maintenance Manual. The purpose of this manual

is to provide the maintenance proqrammer with the

information necessary to understand the proqrams, their

operatinq environment, and their maintenance procedures.

This includes a listing of the code or instructions on how

to obtain a listinq.

Test Plan. The purpose of this document is to provide a

plan for the testinq of software; detailed specifications,

22

.. - ...---- '.. .-.-. -'...-.. ...2-- .Y.-; " - - - .- --.--..

descriptions, and procedures for all tests; and test data

reduction and evaluation criteria.

Test Analysis Report. The purpose of this dccument is

to record and analyze test results and findinqs.

Deficiencies and capabilities are presented for review and

provide a basis to determine software readiness for

implementation.

The next section will describe the reasoninq behind

recommendinq all these documents and the documentation

contained within them.

C. TECHNICAL DOCUMENTATION GOALS

The purpose of qood technical documentation, that

documentation which deals with for example, proqram

requirements, proqram desiqn, interfaces, data requirements,

alqorithms, structures, etc., can be summarized in one

phrase; to accommodate chanqe at a reasonable cost.

Furthermore the documents which contain this documentation

provide definitive work products to be produced in each

phase of the life-cycle. If a project were to meet all of

its requirements and specifications durinq the testinq

phase, to maintain the same individuals throuqhout, and to

face a completely static environment for its entire life-

cycle, then documentation on how it performed its functions

would be absolutely worthless after completion of the

project except to the curious. However this is most always

23

" " . .. " . "-"..". *. "'"""- """ -.- °.*' '- """
*

" ." ""
° "

"" '" ' " - " '- * *".°"''"*. '"* "" .

never the case. The foreword to DOD-STD-1679A (Navy) [Ref.

4:p. iii] states three major factors in the desiqn and

documentation of Navy tactical proqrams. These are:

Criticality of Performance. The combat capability of
defense systems and the combat survivability of combatant
units of the operatinq forces depend, in part, upon the

effective operation of the software. Therefore, careful,
persistent manaqement must be exercised in the software
development phase to ensure maximum reliability and
maintainability.

Changing Operational Requirement. Software implements

system operations and doctrine in areas susceptible to
many chanqes of performance requirements and

specifications. These chanqes often impact the software
and need expeditious implementation. This demands that
software be desiqned to facilitate efficient chanqe,
sometimes at the expense of technical desiqn efficiency.
Desiqners must continously consider the tradeoffs between
future modifiability of the product and desiqn efficiency
as the requirements now exist. Continuation of an
efficient chanqe capability over the operational life of

the system also requires detailed documentation
describinq the system and the software. Proposed chanqes
and their total impact must be easily discernible and
must be capable of beinq implemented by personnel not
associated with the oriqinal development effort.

Life-cycle Cost. Development and implementation of
chanqes to the software over the operational life of the
system are costly. The desiqn of the software durinq
development must be stronqly influenced by factors which
will reduce life-cycle costs.

That the underlyinq qoal of any documentation is to

provide communication of the characteristics of a system and

the processes used in developinq the system independant of

individuals, is apparent from the foreword to DOD-STD-1679A

(Navy) and other publications. Technical documentation must

anticipate chanqe in the proqrams. Enouqh information,

through flowcharts, listinqs, data dictionaries, etc., must

2 4

be available to persons not associated with the oriqinal

desiqn qroup to allow them to develop an understandinq of

what the proqram does and how it does it.

The next section will discuss the Navy's methods for

providinq this technical documentation as prescribed by DOD-

STD-1679A(Navy) and interpreted by the DDG-51 Combat System

Software Development Project.

--

..°=.....

III. NAVY TECHNICAL DOCUMENTATION

As is made apparent in the previous sections, excellent

documentation is an important portion of any software

project. This requirement holds true for Navy software

projects as well where a major consideration of the project

is to plan for chanqe. This section presents a description

of the navy tactical software life-cycle as described in

DOD-STD-1679A(Navy) and presents the planned documentation

in an example Navy software project by describinq the

planned documents to be produced in each phase of the

life-cycle.

A. THE NAVY TACTICAL SOFTWARE LIFE-CYCLE

"The software challenqe is to control the desiqn process

for a complex of operational computer proqrams so that the

resultinq products can be inteqrated into a reliable,

maintainable, and survivable combat system fully responsive

to the mission requirements" [Ref. 5]. This is the openinq

paraqraph to the DDG-51 Computer Proqram Development Plan.

It is like the challenqe of any major software undertakinq,

with the exception that the possibility of further chanqe,

modifications, and enhancements is much qreater, and that

the software project, beinq a qovernmental project, will

always be under close scrutiny. The Navy tactical software

26
....................................

life-cycle is very much like the phased life-cycle described

earlier with staqes very similiar to those described in NBS

FIPS Publications 38 and 64. Usinq the Aeqis Shipbuildinq

Proqram, DDG 51 Computer Proqram Development Plan, as an

example of the typical tactical software development plan,

one can see in Fiqure 4 the five phases described in the

development plan.

- System Definition and Design Phase&. This is a
predecessor phase in which the functional baseline is
established in the A level specification, which is a
formalization of the top level requirements of the
system. And the first level of the allocated baseline is
created and recorded in the element B1 specification,
which is the breakdown of the A level specification into
loqical elements such as the radar element

- Computer Program Definition and Design Phase. This phase
encompasses the definition of the computer proqram
performance requirements, the establishment of interface
requirements, and the specification of the software top
-level desiqn. The performance requirements, documented
in the Proqram Performance Specification (PPS), are the
drivinq force for every subsequent phase of the computer
proqram development process from desiqn throuqh testinq
and delivery.The requirements incorporated in this
document, alonq with preliminary interface definitions
and early top level software desiqn considerations, are
reviewed by the Navy at the Preliminary Desiqn Review
(PDR) which serves to present the PPS for approval as
the preliminary allocated baseline for further
development. Based on the approved PPS, the finalized
interface requirements and the top-level proQram desiqn
are developed and documented, respectively, in the
Interface Desiqn Specification (IDS) and the Proqram
Desiqn Specification (PDS). The Critical Desiqn Review

'The DDG-51 software project is a Naval Sea Systems
Command project. However, the vast majority of the project
is performed throuqh a contract with RCA and various
subcontractors. Some Navy projects are developed totally
"in-house", however the normal procedure is to issue
contracts for the actual software development.

27

- . - . .7

- £j

4

00

ai

c >,

o --2 2 4 4-'

cc

I -ca>

-- 4-,

c.- 0

22

L

(CDR) provides the mechanism for Navy review and
approval of these documents. This completes the desiqn
phase of computer proqram development process, and these
documents serve as the approved final allocated baseline
for further development.

Computer Program Implementation Phase. The computer
proqram implementation phase is based on the approved
documents and specifications produced in the desiqn
phase. The implementation phase encompasses the detailed
desiqn of the proqram modules and data basle as well as
the codinq and debuqqinq of these items. The proqram
module loqical desiqns and the detailed data base
desiqns are developed and documented, respectively, in
preliminary Proqram Description Documents (PDDs) and the
Data Base Desiqn Documents (DBD). These documents are
reviewed at Informal Desiqn Reviews, in which the Navy
participates, and which serves to provide approval of
the detailed desiqn and authorization to proceed with
codinq. Once codinq is completed and error free compiles
of the modules and data base are achieved, an internal
structured walk-throuqh of the implemented code is
undertaken to assure compliance with desiQn
requirements. Successful completion of this structured
walk-throuqh serves to release the modules and the data
base for testinq. This completes the implementation
phase.

- Computer Program Testing Phase. Computer Proqram
development te stinq is performed within the context of
the top-down approach to development. TestinQ starts
with the smallest operatinq components; i.e., modules,
and develops throuqh successively more complex and
inclusive staqes. Modules are inteqrated into subproqram
builds, which are operational subsets of the complete
computer proqram. Build tests are performed with Navy
participation. Functional capabilities are added to the
subproqram builds, and, in the last staqe, the final
build is tested as a complete computer proqram. Test
plans, test procedures, and test reports are prepared at
all levels of testinq, beqinninq with the module unit
testinq. The Computer Proqram Qualification Test,
conducted at the developer computer proqram test
facility and performed to Navy approved test procedures,
is the final test of the computer proqram as a
standalone entity. The successful accomplishment of this
test marks the completion of the software development
phase. Subsequent activity is in support of element and
system level inteqration and testinq. A preliminary
product baseline is established at the completion of the
software testinq phase.

29

_.-. - -.- J - - , - , -* _ r . . - _ , .. , 7 . . _ _. . .

- System _Inteqaat ion Test inq Phase. At the Combat System

EnqineerinQ Development (CSED) site, software is

employed as embedded subsystems for inteqration with

equipment and/or other computer proqrams in the element
and multi-element testinq environment of that facility.

Essentially conditions as close to the actual

operational environment of the final product as possible

are constructed for complete system testinq to include

an actual mockup of the platform the system will be

embedded in. The final product baseline is established

at the completion of system qualification testinq.

:NITIAT:CN DEVELOPMENT CPERAT:,N

PHASE PHASE P!ASE

-B: -
F DF 1NIT I nN DES13N PROGRAMM~ING TEST

STAGE STAGE STAGE STAGE

- PROJECT - FUNCTIONAL - SYSTEM/ - TEST

REQUEST REQUIREMENTS SUBSYSTEM MANUAL ANALYSIS
DOCUMENT DOCUMENT .;PECIFICATION - OPERATICN R H E1 .T

-FEASIBIL. -RGRAM MANUAL
3TUDY - DATA
DOCUMENT REQUIREMENTS SPECIFICATION - PROGRAMMA INTENA NCE

COST/ DOC'TMENT DATABASE MANUAL

BENEFIT .;PEC 1 FICATION

ANALYS IS
DOCUMENT

i:- rEST PLAN-

C0RF4A RE P RC3RA - PRORAM - PPCC1AM SOF1WARE
PEVF T, ERF RMAN-E DESCRIPTON 7E3T TROUBLE
_:C,,PEC:F ATICN c .ENT PRC:ED'.' ES REPORT

- PRCGRAM - P:ORAM P :OFD'A ,E

AZT -AASE PACKAGE FLA: SAN EA* -" 'CE.Z.*G DO ZU:4EN7 - PRO]
, -ES:

R- SYSTEM? . T
- -:.. -LRRAA OPERATO'

'' IESIGN
:C ",FT0 N _ 'MANUAL

- UILD PLAN AND DEVELO PMENT
INTERFACE DES. F -LDER
PECIFiCATION

- COMPUTER ROGRAM TEST SPECI FICA:j-N-

Y:-TP7EM 2EF:N:TI,'N COMPUTER PROGRAM 'COMPUTER PROGRAM O'MPUTER PROGRAM CFEPATICN
'ID DEFINITION AND IMPLEMENTATICN AND SYSTEM INTES PHASE

* HIO'N PHASE DESIGN PHASE PHASE TESTING PHASE,

Fiqure 5. Comparison of Life-cycle Documentation
Requirements

o.O2

Fiqure 5 shows the similarities between the Navy's

phased life-cycle and the NBS phased life-cycle by

displayinq the five main phases of naval tactical software

and the phases recommended by the National Bureau of

Standards. Also shown is the suqqested documents to be

produced durinq these phases.

The concept of documentation requirements for the Navy

is contained in DOD-STD-1679A, however the actual document

requirements, and the specific contents of each document,

alonq with the prescribed layout of the document is

prescribed in a data item description (DID). These DIDs are

envoked in a contract as necessary, to ensure standardized

and complete documentation is included in the software

packaqe and to provide the flexibility to tailor DOD-STD-

1679A(Navy) to various software projects. The documentation

requirements and the documents to be produced in Naval

tactical software development is discussed in the next

section.

B. NAVAL SOFTWARE TECHNICAL DOCUMENTATION REQUIREMENTS

As stated before, the content, style, and coveraqe of

all documentation associated with a naval software contract

is well defined in the contract. The "Contract Data

Requirements List", or CDRL, specifies which military

standard the contract shall conform to. The military

standard, MIL-STD-1679A (Navy) in this case, is not simply a

." 31

.............

quideline, it is much stronqer. A standard must be complied

with, and qenerally provides the "shalls" of a contract, or

* the qeneral areas that must be addressed throuqh the

documentation. Also included in the CDRL are "data item

descriptions", or DIDs, which specify exactly how a document

will appear, and exactly what this document will contain.

The standard provides the requirements in qeneral terms, and

the DIDs provide the specifics for a particular contract.

DIDs provide the flexibility to tailor a military software

contract to any project, be it larqe or small.

The best way to understand the documentation required in

a military software project is to view it as a it is to be

recorded durinq the life-cycle.

- Initial Planning Software Development Phase:

- Objectives:

1. To combine the Navy's and contractor's ideas

for accomplishinq the project.

- Documentation:

- Software Development Plan. Software manaqement's

D plan for developinQ the proqram performance

specifications, and producinq the software.

- Software Confiauration Management Plan. The

confiquration manaqement qroup's plan for

manaQinq chanqes in software confiquration

durinq software development.

32
To° .o

- Software Quality Assurance (QA) Plan. The QA

qroup's plan for verifyinq that all requirements

in the contract are met. The basis for the test

plan.

- Computer Program Definition Phase:

- Objectives:

1. To identify the Computer Proqram Confiquration

Items (CPCIs) required for each element.

• 2. To determine the detailed proqram performance

requirements for each combat system element

computer proqram and to specify them in the

element Proqram Performance Specification (PPS).

3. To define the interface desiqn requirements and

to specify them in the Interface Desiqn

Specification (IDS).

4. To define the operatinQ system and support

proqrams required to support the operational

element proqrams and the development process.

5. To provide desiqn information to the Navy,

system desiQners, and other enqineerinq
0

aqents.

6. To reduce risk by establishinq the technical

feasibility of the Combat System Software.

7. To identify critical areas early in the

33

.

software development cycle.

B. To provide for quality assurance and testinq

requirements.

- Process:

This functional baseline established durinq the

system definition and desiqn phase includes the

element Prime Item Development specification (B1)

which provides the vehicle for mappinq the

functions allocated to computer proqrams into

computer proqram performance requirements.

Fiqure 6 shows the process used in determininq

these computer proqram performance requirements.

The resultinq definition of element computer

proqram requirements is documented in the

PPS for each element, the preliminary Interface

Desiqn Specification (IDS), and the Desiqn

Disclosure Packaqe (DDP). These documents form

the basis for the Preliminary Desiqn Review (PDR).

- Documentation:

- Program Performance Specification. For each

element the PPS provides the baseline document

for subsequent computer proqram development.

It defines the operational and functional

performance required of the element computer

proqram, and provisions for quality assurance

and testinq. The PPS also specifies a computer

34

eq~uipment configuration designed to satisfy

the specified requirements.

BASELINERASEL I

VIFI 7TOF-

NASY DESIG

DLOA E IN w o'A"fD

s
75

OIG

P:LELIMINAE osLMINAN

17 I ~ ~ DT
6AASE1

C OMENT PORIADSG IH

- Iterface Deg SpeCifications). Th

pqreliminarputer provided thD efintio n ofd allq hae

digital interfaces to the element computer

proqr am.

-Design Disclosure PackAqe. The DDP provides the

results of modeling, system engineering analysis,

35

and any other studies done to determine system

feasibility.

- Computer Program Design Phase

- Objectives:

1. To develop the computer proqram architecture and

top-level desiqn and to specify it in the Proqram

Desiqn Specification (PDS) for each element.

2. To specify module functional descriptions,

proqram control logic, hiqh-level data base

desiqn, and initial memory and time resource budqet

requirements.

3. To develop detailed definition of computer proqram

interfaces, and to specify these in computer

proqram interface desiqn specifications (IDSs).

- Process:

Followinq the approval of the PPS for an element

computer proqram, an element Proqram Desiqn

Specification (PDS) is developed to specify the

architectural and top-level desiqn requirements

for the element computer proqram. The computer

proqram desiqn process involves the allocation

of software functions defined in the PPS to

software tasks, as shown in fiqure 7. Some of the

functions to be performed durinq this phase are:

- A functional allocation of all performance

36

..

requirements shall be made to the computer

proqram modules.

- A functional flow of proqram data and control

shall be defined in all modes of operation.

- The proposed architecture shall be verified as to

its capabilities to support the maximum

computational load.

- A common data base shall be desiqned for all data

elements used by two or more subproqrams.

00CUMIiNTATIOlN

STANDARDSA

... ~-J....- ~

I AI ROGO P O40AL A

SPECIFTAS ICSO | P*ICIFINAnYIO

• ALLOCATION0 | IIQ

TOPO

.ICFCA7O "ALMIA CRINTICA

PROCSSIN ALLOCATION ICIIN INv RVI"

i~~~ TS F-qu0e TO Comute DOCUMENT DeInCrOesNf 5p

-IIIIN .N 000

PRLIINR

- oOS

los

.'- .-.' '. ." • .' .-' '. , • --' '- .'- .' " .; -" "- " "- .' " -'. -' '- " " ." . -' '. " '.' '. ." -" "- " "- .' '. -' '-' ' " '. .', .' ', .' : ' : ' - ' '. , '. .' '.-J.'I-N'. , .E.:

p

- Documentation:

- Program Design Specification. The PDS is qenerated

accordinq to the requirements and constraints laid

down by the PPS. At this staqe, the development

process focuses on a top-down translation of system

operational function requirements into proqram

loqic includinq module functional descriptions,

proqram control loqic, and memory-and-timinq

estimates. Such items are necessary for detailed

subproqram and data-base desiqn and

implementation. Included are proqram functional

flow diaqrams, cross reference tables between

the PPS and the PDS, the modular proqram

structure, and the proqram data flow diaqram.

- Interface Design Specification. The preliminary

IDS(s) produced durinq the definition phase are

updated, and the details of interfaces (messaqes)

are added. This document, after approval at the

Critical Desiqn Review, is placed under

confiQuration control. This document provides a

detailed description of: all data units, all

messaqes, and all control siqnals.

- Data Base Design Document. A DBD is produced for

each element. The DBD provides a complete detailed

description of all common data items necessary to

,38

carry out the element computer proQram functions.

Common data are those required by two or more

modules. This document is completed durinq the

next phase, i.e., the implementation phase.

Durinq the detailed desiqn portion of the

implementation phase, an element computer

proqram data base librarian maintains the

the developinq data base in the form of the DBD.

Usinq the DBD in the role of Confiquration

Manaqement, the DBD serves .he purpose of (1)

Controllinq the data elements definitions, (2)

Maintaininq the attributes of fields, (3)

Reducinq the data redundancies and

inconsistencies, (4) Allowinq module desiqners

to communicate effectively with each other

throuqh joint meetinqs prior to chanqinq the data

base, (5) Containinq cross references of users of

data, and (6) Determininq the impact of data base

chanqes on the data base and other modules.

- Build Plan. A "build" is a loqical collection

of modules. Modules are desiqnated as part of a

build, tested as modules, then inteqrated into

* builds. Build 1 may have modules 1,3,5,8. Build

2 is modules 1,2,3,5,8. Build 2 is not dependant

on completion of build 1; however a certain

level of completion must be achieved prior to

39

the modules beinq used in build 2. Each build

adds modules with phased inteqration until

the complete product is achieved. The build

plan is the desiqn of this process, and is

Pre-Review Post- Review
Phase Activities Products' Reviews Products'

Computer Perform require- Program Perform- Preliminary Approved PPS
Program ments analysis. ance Specification Design Re-
Definition Prepare PPS view ,PDR)

Prepare prelimi- Preliminary Interface
nary IDSs) Design Specifica-

tion(s) IDS)

Conduct prelimin- Preliminary Design Approved PDR
ary software design Review (PDR) Minutes

Presentation Mater-
ial including

Design Disclosure
Package (DDP)

Computer Conduct computer Program Design Critical Approved PDS
Program ' program design. Specification Design
Design Prepare PDS (PDS) Review

iCDR)
Prepare IDSs IDSsi Approved

Build Plan IDS, s)

Conduct build Build Plan
planning Preliminary Data

Base Design
Document IDBDr

Conduct data base Critical Design Approved CDR
design Review iCDR) Minutes

Presentation

Material

'Audited and maintained by Quality Assurance Organization for the duration of project.

Fiqure 6. Summary of Computer Proqram Desiqn
Approach [Ref. 5:p. 3-9)

'41

maintained by the manaqer responsible for the

software development and is updated as required.

- Computer Program Implementation Phase

The implementation phase is actually made up of two

sub-phases; the detailed desiqn phase, and the code and

debuq phase.

- Detailed Design Phase:

- Objectives: After successful review of the hiqh-

level module desiqns, the detailed desiqn of each

S module is bequn. The data desiqn, tables, variables,

flaqs, indicies, data base references, I/O formats,

required system library routines, conditions for

initiation, module limitations, and interface

descriptions are defined. Each of the module

requirements identified in the PDS must be desiqned

into the module.

- Documentation:

- Program Descriotion Document (PDD). Provides

0 a complete technical description of all module

functions, structures, operational environments,

operatinq constraints, and private data base

0orqanization, for each module of the element

computer proqram. Each module is described in its

own volume of the PDD with referenced appendixes

0as computer printout listinqs. The PDD describes

...-. 4 1

and completely defines the basic loqic and proqram

procedures for each application module. As a

detailed description of the module structures the

PDD serves as the essential instrument for

subsequent use by operational maintenance and

contractor personnel diaqnosinq troubles, makinq

adaption chanqes, desiqninq and implementinq

modifications to the system, and in addinq new

functions to the completed proqram.

- Data Base Design Document. Described earlier.

- Module Development Folder (MDF). The MDF for each

module is bequn after the internal desiqn review,

and is maintained by the coqnizant proqrammer durinq

all phases of the module development and test. Items

contained in the MDF include: (1) Results of the

internal desiqn review, (2) Evidence of approval

to proceed to the next phase, (3) Resolution of

action items, (4) Data describinq the rational for

the module desiqn, (5) The indented source listinq

qenerated by ASCP, (6) Results of the structured

walk-throuqh, (7) Description of the module for

the PDD, (8) Unit test plan and procedure, and

(9) Unit test results.

- Code and Debuqg Phase.

After the detailed desiqn is completed and

42.

b. - * - . . .* . *.s * . * - . * . .

approved, the code and debuq of the module beqins as

shown in Fiqure 9. The proqrammer/analyst(s) qenerates

source code that satisfies the detailed desiqn of the

module. Module and data base codinq is considered

complete when a clean, error free compile is achieved

and the Automated Source Code Processor (ASCP) computer

proqram has verified adherence to structured proqramminq

standards and conventions. Other than updatinq the MDF,

there are no additional documents produced durinq this

portion of the implementation phase.

PR C~l OOULE LISTINGS STRUCTURES MOL
APPROVAL 1 1E RAOR 11':AE E PROCEDUREVALTRs LIMIT
TO COOE COMPILE) RELATIONSHIPS ALYRUHTEST

Fiqure 9. Code and Debuq Process (Ref. 5:p. 4-83

43

Phase Activities j -rv;- Review
,',ducts jProducts,

Detail Design High Level module Iiigh-level flow Design Review Approved
design diagrams of detailed PDD

design Annotatedi

Detailed module design Module Deveiop- A\pproved
Ptepare POD ment Folder ,MDF DBD
Data design Annotated,

(>,de and Develop Morecd oe odules onna Document
Debuopen Fodr PI

code errors
DBD Annotated,

Produce indented
listings and flow U!pdated NMUF

* procedure
relationships

Update MDF

Quality Assurance control for the duration of project

Fiqure 10. Summary of Detailed Desiqn and Code Approach
[Ref. 5:p. 4.-9J

- omlputerpro ramTestinq Phase.

-Objectives: This phase actually spans the

implementation phase and its own phase. Testing is

divided into three distinct subphasess the unit test,

the build test, and the proqram qualification test.

Testing starts with the smallest operating component,

and develops through successively more complex and

inclusive stages. The modules are integrated into

subprogram builds which are operational subsets of

the complete program. Build level tests are performed

...

on these inteqrated builds to validate functional

capabilities. Additional functional capabilities are

successively added to the subproqram builds and, in

the last staqe, the final build is tested as a

complete proqram. Naval participation in all aspects

of the testinq phase is required. Additionally

rnternal Proqram Reviews are held to qain joint Navy,

contractor, and subcontractor aqreement with test

definitions, content, methodoloqy, performance, and

evaluation for build and qualification tests.

- Unit Test Plan: The unit test plan is contained in the

MDF. It contains the strateqy to exercise all of the

code in the module, either in a standalone

environment, or in an inteqrated environment with

previously tested modules. Any failure is documented

in an action item, which is included in the MDF and

returned to the proqrammer for correction. Also a part

of the unit test plan is the unit test procedure. Unit

test procedures are derived from the unit test plan,

and correspondinq desiqn documentation. They present

detailed instructions for test setup, execution, and

evaluation of test results. The unit test procedure

also becomes part of the MDF.

- Build Test Plan and Procedure: The build test plan

and procedure document contains the followinq

information:

'45

o• - , ° . - -. -.- o.. . .

1. A definition of the testinq proqram and strateqy

required to test the build, includinq a rational

for for the testinq proqram as it relates to the

functional capabilities and structure of the build.

2. An outline of the capabilities of the build to be

tested, plus those capabilities provided, but not

tested, and capabilities previously tested that

require retest.

3. A description of the test methods, test tools, and

observations and measurement techniques to be used.

4. A specification of the test sequence.

5. A description of the contents of the test,

includinq personnel requirements, responsibilities,

and facilities required.

6. Detailed instructions for test setup, execution,

and evaluation of test results.

7. A description of the scenario(s) which demonstrate

the major operational capabilities of the build.

- Proqram Qualification Testinq. Proqram qualification

testinq is performed at the Computer Proqram Test Site

and is the final staqe of the computer proqram

development phase. Here the build test plans and

procedures come toqether with the PPS, the IDS, the

preliminary user's manual, and the preliminary

operators manual to qenerate the Proqram Qualification

Test Plan and Procedures. Upon completion of the

testinq the Proqram Packaqe and the Operator's Manual

are delivered for operational use. Products of this

phase are the Proqram Qualification Test Report and

the Test Discrepancy Report.

Fiqure 11 summarizes the relationships between the

required software documents and software phases.

avow MVE"

oa *UVIIIUITS PULWAI OIMUS UW UW PISSMUISS Ilp t"A
iAN0 Awvu 111516,11 now n N RAI ""M TI9SM

W WAM TN MAN (IOP) S m

536407SIN mwjbS

- IOmUU~d i RUIT U P~UI p
NugAN gU.W nM
ODI m "

UnI SAMIS AN

sP~ahoa In)PSI . V

MPST) 0.1

T-"L 4 DliSES p.I6KI Fl

AcTA USET W 1 1 W

TV V PLAN 06

TIP11 P ATOS 06uL .

TESMC111196

PEAA

* OOATIES1
II SI I T

- .W

Fiqure 11. Relationships Between Software Documents and

Software Phases. [Ref. 6:p 402]

"47

.
%

.

-I '

IV. NAVAL DOCUMENTATION: PROBLEMS AND SOLUTIONS

A. NAVAL DOCUMENTATION, HOW DOES IT STACK UP?

When viewinq the Navy Military Standard for Software

Development, DOD-STD-1679A(Navy), one cannot help but to be

impressed with the very modern and complete approach the

Navy takes in its software development. Usinq the DDG-51

software desiqn effort now in proqress, and the CG-41 desiqn

effort as an example of a major tactical embedded computer

software desiqn proqram, every facet of modern software

desiqn technoloqy is present. Software conforminq to DOD-

STD-1679A(Navy) exhibits the followinq characteristics:

- A well defined software methodoloqy that includes a
defined life-cycle model and definitive phases of the
life-cycle.

- A stronq level of planninq in the System Definition and
Desiqn Phase which is exceptionally well documented
throuqh the System Requirements (A Spec), and Element
Requirements (BI Spec).

- Early definition of the Computer Proqram Performance
Requirements documented in the PPS and early definition
of interfaces documented in the IDS.

- Modular computer proqram desiqn specified in the PDS
with additional updates to the IDS and further
documented in the PDD and DBDD.

- A stronq formal confiquration manaqement plan that is
enacted early in the desiqn phase to maintain a
definitive version of the project throuqh all phases,
and manaqed by a separate confiquration manaqement
qroup.

- Early definition of performance requirements directly
translated into test plans and procedures.

48

• - - • . . - " o o .. -. • .. •* . ° .. . , . °- " . . ' .' ,'. . . -o - • - , .

b' . '• . .' '% .' .° . "., *' °*,"°. . ."" ° , % , - , '° % . ". S o " % . % " " '' ° '

- A hiqhly structured test plan that includes test
requirements, test procedures, definitive metrics for
the test included in the test specification, test
documentation procedures for conductinq the test,
procedures for recordinq the results and qaininq
approval, and a cyclic approach to correction of errors
detected.

- A quality assurance proqram that incorporates all
aspects of the testinq, with a seperate QA team.

- A software methodoloqy that is desiqned to smoothly
produce the documents required as a function of
followinq the prescribed methodoloqy.

- Standardized document content and desiqn as specified in
data item descriptions (DIDs) enacted in the contract.

- A well controlled review procedure as part of the
methodoloqy that ensures the "riqht product is beinq
built", and that the "product is beinq built riqht", and
ensures that the Navy is well informed and in
concurrance with the contractor in all phases of the
project.

Additionally, the software development methodoloqy

utilized, and the documentation produced under DOD-STD-

1679A(Navy) meets or exceeds the

requirements/recommendations of the followinq publications:

- National Bureau of Standards (NBS) Federal Information
Processinq Standards (FIPS) Publications 38 and 64,
Guidelines for Documentation of Computer Proqrams and
Automated Data Systems, Guidelines for Documentation of
Computer Proqrams and Automated Data Systems for the
Initiation Phase, respectively.

- National Bureau of Standards, Special Publication 500
-15, Documentation of Computer Proqrams and Automated
Systems. A symposium held at NBS in 1976 to discuss the
problems in documentation of computer proqrams. All
problems addressed in this symposium and listed in the
publication are addressed in DOD-STD-1679A(Navy).

- Institute of Electrical and Electronics Enqineers (IEEE)
Standard for Software Test Documentation, IEEE Std 829
-1983. Althouqh the terminoloqy differs somewhat, the
major provisions of the IEEE standard are covered well

49

in DOD-STD-1679A(Navy).

- National Bureau of Standards Special Publication 500
-106, Guidance on Software Maintenance. An important
note here is that the Navy's definition of maintenance
and that of the NBS differ. Whereas the NBS terms any
chanqes to the code after the approval of the oriqinal
baseline as maintenance (termed perfective and adaptive
maintenance), the Navy considers modifications and
additions of enhancments to the oriqinal baseline as
further development. However, the provisions of NBS
Special Publication 500-106 for perfective and adaptive
maintenance are included in DOD-STD-1679A(Navy).

B. NAVAL DOCUMENTATION, THE PROBLEM AND CAUSES

Althouqh software developed and documented in accordance

with DOD-STD-1679A(Navy) and the associated envoked DIDs

would appear to utilize what is presently considered to be

the most modern and effective software development

methodoloqies, and to provide documentation that meets the

provisions and requirements of all authoritative

publications there are still major problems expressed by

personnel associated with naval software development.

However, the cause of the problems do not appear to be as a

result of discrepancies in the applicable standards, but

rather the problems appear to be as a result of manaqement

improperly viewinq the reasons for documentation and not

placinq the appropriate priority on the documentation

process.

One problem noted is the possibility of "over-

documentinq" a project. Documentation is an expensive

undertakinq, and it is money "up front", that is money that

5f)
-. *..

is required early in the project's life-cycle. Additionally,

modifications to the software made in the later phases

require that the project qo back and update all of the

documentation affected by the chanqe. This is always a major

expense. The more complex the level of the affected

documentation then the more expensive the modifications

become. Dr. Sinqh of Naval Material Command OY expressed in

an interview a stronq belief that many of the smaller

tactical software projects are over documented, or that the

documentation level is much too complex for the scope of the

project. He proposes that one of the first actions of the

project manaqement is to determine exactly what

documentation level is desired based on the criticality of

the projects the size of the project, its planned life-span,

and the probability of chanqes beinq made in the oriqinal

requirements specification. His view is supported in FIPS

PUB 38 which defines four levels of documentation [Ref. 4:

pp. 10-113. However Dr. Sinqh feels that even if the

software is "critical", which would place it in the hiqhest

level of FIPS PUB 38 documentation, there is some room for

makinq the documentation a bit less complex. While too

little documentation normally brinqs about major expense

later on in the life-cycle, too much documentation acts as

an unnecessary burden and expense throuqhout the life-cycle.

Another problem evolves from the Navy's commitment to

the phased life-cycle approach. The phased life-cycle

51

.........

approach does not provide for chanqes beinQ made in products

of phases already past such as the requirements

specification beinq chanqed when the project is in the

testinq phase. If a chanqe occurs then the only way the

chanQe can be accommodated is to back up to the last phase

that would not be affected by the chanqe and start over with

the development process at that point incorporatinq the

chanqe as the project flows throuqh the phases. This is an

expensive and time consuminq method to accommodate chanqe

but it is the only method that will ensure success when

usinq the phased life-cycle approach.

The most siqnificant problem expressed concerninq

documentation of naval tactical software projects was a lack

of understandinq of what purpose the documentation is to

serve. Documentation serves two major purposes; (1) to

interact with the software methodoloqy used in providinq a

quide for accomplishment of the project, a set of wickets if

you will, for the enqineers to pass throuqh on their way to

accomplishinq their qoals, and (2) to historically record

the qoals or requirements of the system, and the processes

and methods used to achieve those requirements as a basis

for understandinq the system in order to be able to modify

the system in the future. DOD-STD-l679A(Navy) provides a

fairly qood methodoloqy outline for software desiqn of a

naval tactical system. It also provioes an excellent

description of what, historically, have proven to be useful

52

--

documents to both the desiqner and the maintainer. What it

does not provide is an understandinq of how important

documentation is to the software development effort or how

important documentation is to the continual success of the

project in the face of chanqe. Documentation is an inteqral

part of planninq and controllinq the software development.

Each document represents a milestone in the further

reduction of top level requirements into accomplishable

tasks. It is the tanqible portion of the methodoloqy that

functions as a control tool for manaqement throuqhout the

*D life-cycle of the software. And it allows the product to be

enhanced or otherwise modified in the future by individuals

not oriqinally associated with the development effort.

Manaqement must realize this as such and enforce the

discipline necessary to produce or update the documentation.

Many of the individuals interviewed for this thesis

expressed a concern that the documentation for their project

was either non-existant, very late, or not up to date with

the actual state of the project. Documentation that is not

up to date is in many cases worse than non-existant

documentation in that it has the possibility of

misrepresentinq the system. Documentation that is late

normally turns into documentation that is not up to date. In

most software desiqn methodoloqies documentation is used to

provide a measure of what the system qoals are, and where

the system is. If there is nothinq that provides a

53

definitive answer of where the system is, then it is quite

difficult to say where the system is qoinq.

Althouqh an excellent outline of what documentation to

consider is provided in DOD-STD-1679A(Navy) and most

projects commence with an excellent plan for documentinq

their systems, the latter staqes of a larqe portion of these

projects find themselves with documenatation that is

inaccurate or behind schedule. NBS Special Publication 500-

87 (Ref. 7] provides five main reasons for this happeninq:

- Low Priority for Documentation. Project manaqement does
not encouraqe the system analysts and desiqners to
maintain and update their documentation when faced with
time schedules and limited resources.

- Lack of Resources. Low priority for documentation often
leads to inadequate resources to perform necessary
documentation tasks. The "we'll qet to it when we have
time and money" syndrome takes effect.

- Lack of Planninq. Manaqement fails +.o clarify
documentation requirements at the start of the project.

- Failure to Specify. Manaqement fails to adequately
specify the system requirements at the start of the
pro jec t.

- Personnel Attitudes. Proqrammers often have little
interest in documentinq. The work is often viewed as
unqlamorous, and daily pressures often override some
perceived uncertain needs for documentation.
Documentation is not visable; as lonq as the project can
move alonq then documentation is viewed as unneeded and
priorities often shift to more visable objectives.

C. DOCUMENTATION, A SOLUTION IN ITSELF

Documentation must not be viewed as a necessary evil in

*- a software project, but rather as a vital manaqement tool to

54

. f. - * f.. . . .

be used in controllinq the entire project. Manaqement must

realize that documentation is a major key to a successful

project. "In order to yield a qood software product, the

software documentation activities must be inteqrated into

the whole software development process. Proqram

documentation is an active part of proqram development. It

should not be treated as a passive task of simply

recapturinq the descriptions of an already developed

proqram. Good proqram desiqn leads to qood documentation.

Good documentation contributes to qood desiqn." [Ref. 83

Viewinq the causes of poor documentation mentioned in

section B above, naval tactical software projects appear to

suffer from only three of the five causes. There is neither

a lack of planninq nor a failure to specify initial

requirements. In fact, naval tactical software projects

place a hiqh priority on initial planninq and specifyinq the

initial requirements of the project. Unfortunately, despite

a seeminqly hiqh priority beinq placed on documentation as

evidenced by the stronq discussion of documentation in DOD-

STD-1679A(Navy) and the associated DIDs, documentation

appears to be quickly placed on the "back burner" when

confronted with deadline dates and unplanned modifications.

These actions betray a relatively low priority beinq placed

on documentation. Additionally, when faced with fundinq

limitations and unplanned modifications, updatinq

documentation is aqain assiqned a low priority, thus

S.55

becominq late or incomplete which complicates the project

later in its life-cycle when qood documentation is required

for additional modifications or improvements. Personnal

attitudes deqradinq the quality of naval tactical software

documentation more difficult to substantiate throuqh naval

sources. The Navy normally contracts out the vast majority

of its proqramminq and desiqn with a substantial approval

end testinq process to maintain control of the project.

However a siqnificant number of studies have concluded that

proqrammers have neither the desire nor the exact talents to

properly document a project [Ref. 93, so it can be safely

assumed that naval contractors suffer from the same

problems.

The solution to these problems must take on a two

pronqed approach. One must be the responsibilty of the

contracted corporations, the other a responsibility of naval

tactical software manaqement.

There is presently quite a larqe amount of research and

development beinq peformed in the areas of automated tools

for the documentation effort. With the ever increasinq power

of computers, and the simultaneous demand for systems to

take advantaqe of the developments in computers and to do

more, the complexity of the major systems beinq produced

today has outstripped the ability of the system analysts

without the assistance of automated tools. The time has

passed when a desiqner can effectively review module

56

................. ...,........-..-...........

performance requirements and say with certainty that they

meet the top level requirements. There is simply too much

for an individual to handle. Additionally, maintaininq data

dictionaries, data flow/control flow diaqrams, interface

specifications, and the like, has aqain become much too

complex for the unassisted individual. Althouqh beyond the

scope of this thesis, it stronqly recommended that naval

manaqers, when evaluatinq a contractor's response to request

for proposals, take into account the contractor's ability to

produce the proper documentation completely and on time and

their ability to maintain this documentation in the event of

unplanned chanqes. Manaqers should consider what tools are

beinq employed by the contractor and what, if any,

documentation orqanization is proposed by the contractor.

The second half of the two pronqed approach is the

responsibility of naval tactical software manaqement. First

and foremost manaqement must realize the importance of

quality, timely documentation to the projects success.

Documentation must be moved from the back to the front

burner. This can be done by simply makinq documentation a

factor in which the quality of the contract is .udqed. That

is, subject documentation delivered to a metrics evaluation,

the performance of which determines a portion of payment on

the contract. A contractor faced with a loss of revenue, or

a qain, as determined by the quality of his documentation

57

performance will certainly raise documentation in his

priorities.

Additionally, manaqement should consider the formation

of a Documentation Group on a manaqement level par with that

of the Quality Assurance, and Confiquration Manaqement

qroups. Althouqh the idea of a documentation committee is

not new, a documentation qroup would be formed at the

beqinninq of the project and relieve QA, CM, and

desiqners/analysts of the burden of documentation decisions,

not formed to review the already present problems in

documentation as most committees are. A documentation qroup

could be charqed with the responsibility to:

- Recommend required documentation and document complexity
for the project.

- Evaluate a contractor's ability to produce required
documentation.

- Establish metrics with which the contractor's
documentation performance could be judqed.

- Perform auditinq functions to verify documentation
accurately reflects the system beinq produced.

- Work with QA and CM in maintaininq documentation.

- Collect cost versus benefits data on documentation to
analyze for use in future projects.

- Provide a qroup of individuals whose major concern is
that of proper documentation of systems and maintenance
of that documentation.

Whether a formal documentation qroup is established or

not, the importance of hiqh quality timely documentation as

a critical portion of a successful project must be impressed

58

.%*..-*...*

upon the entire development team. The responsibilities

recommended above for the proposed documentation qroup must

be fulfilled no matter what the orqanizational distribution

is. Documentation must be maintained throuqhout the entire

life-cycle and must receive a priority equal to that of the

desiqn and code function itself. If a documentation

requirement is delayed in order to be able to meet some

unforseen requirement, then manaqement must make every

effort to ensure that the documentation is completed as soon

as feasible and not allowed to be continually delayed. The

problems caused as a result of late documentation increase

proportionately with the amount of delay involved.

Additionally a direct correlation between the size and

complexity of the proposed system and that of the

documentation must be established, the amount of

documentation and the complexity must be critically reviewed

at the start of a project and recorded in the contract

requirements.

The old adaqe "the job isn't done until the paper work

is completed" is a most important rule of thumb to remember

when manaqinq a software development project.

a59

***.

V. SUMMARY OF CONCLUSIONS

This thesis has reviewed the methodoloqy used in the

development of Navy tactical embedded computer software and

the documentation produced by followinq this methodoloQy.

The major conclusions are presented in the followinq

paraQraphs.

The methodoloqy utilized by the Navy was compared to

those recommended by the National Bureau of Standards, the

IEEE, commercial publications, academic publications, and

experienced individuals. Comparison revealed that the Navy

utilizes an extremely modern, complete, and efficient

methodoloqy that incorporates most all of the suqqested

development procedures.

The Navy, in developinq a new combat system, or in

modifyinq an existinq system, normally acts as a manaqement

team that contracts out explicit software desiqn to a

contractor throuqh competitive bids. DOD-STD-1679A(Navy)

acts as the major controllinQ document for Navy manaqement

to use in contractor developed software. This standard

defines a qeneral methodoloqy usinq the phased life-cycle

approach for software development that can be tailored to

the specific project throuqh the use of data item

descriptions(DIDs). The standard does not address specific

60)

.......................

development procedures such as Chief Proqrammer Teams, or

technical writers, but rather it defines the output desired

by the Navy and characteristics this output must exhibit for

the product to be satisfactory. Items the product must

exhibit include top-down desiqn, modularity, bottom-up

testinq, etc.. The major controllinq functions utilized in

this standard are a stronq interaction between contractor

and the Navy, specific divisions where Navy approval is

required for further development, and extremely specific

documentation requirements that would normally be fulfilled

if the contractor were followinq the provisions dictated by

DOD-STD-1679A(Navy).

The DOD-STD-1679A(Navy) was found to be entirely

satisfactory for the purpose to which it was desiqned when

exercised by competent manaqement.

The major problems discussed were not caused by

deficiencies in DOD-STD-1679A, but rather were caused by a

misinterpretation of the standard by manaqement. One problem

noted was the propensity for smaller software development

projects to be over-documented. Manaqement must determine

what the documentation level of the system is to be as an

initial action and must make this decision evident as part

of the contract. Documentation complexity and coveraqe must

be determined by considerinQ the projects size, complexity,

and planned life-cycle. Items such as the possibility for

future modifications, the planned lifetime, and the

61

criticality of proper performancel must be balanced aqainst

the cost and burden of proper documentation. Tradeoffs are

inevitable, but a clear decision must be reached in this

area.

Once a decision concerninq the level and complexity of

the documentation for the project has been reached, the

decision must be enforced throuqhout the project's life-

cycle. Projects examined exhibited characteristic behavior

of early documentation beinq of hiqh quality and produced on

time and within budqet! however, as modifications occurred,

and time and money limits became a major factor,

documentation was quickly put aside in the interest of a

-- fully functional proqram with the added performance

functions. As documentation is an important controllinq

feature of DOD-STD-1679A, and poor documentation has a

"snow-ballinq" effect as the project moves further down its

life-cycle, it is suqqested that this not be done so without

careful consideration. Perhaps the modification is not so

essential, or if it is then every effort should be made to

restore the documentation to its hiqh quality level as soon

as possible.

The final conclusion was that manaqement does not place

D a hiqh enouQh priority on documentation. AlthouQh it was not

oossible to statistically relate project difficulties to

inadequate earlier documentationg many of those interviewed

expressed a view that their problems would not be as

62

.1 . . .

difficult had they the proper documentation available. The

importance of confiquration manaqement and quality assurance

to a successful project has become well understood. It is

suqqested that proper documentation, and a continuous effort

alonq that line throuqhout the life-cycle be elevated to the

priorities now enjoyed by CM and QA. This thesis suqqested

the creation of a documentation qroup equal in stature to

the QA and CM qroups to oversee the documentation process.

Proper documentation is an investment in the future

performance of the software product, and assists in

controllinq the present.

6.3............................ .

-

LIST OF REFERENCES

1. Fairley, R. E.% Software Engineering Concepts,
McGraw-Hill Book Company, 1985.

2. Boehm, B. W., Software Engineering Economics,
Prentice Hall, Inc., 1981.

3. Federal Information Processinq Standards Publications
38 and 64, Guidelines for Documentation of Computer
Programs and Automated Data Systems, National Bureau of
Standards.

4. DOD-STD-1679A(Navy)q Military Standard Software
Development, p. iii, 1983.

5. DDG 51 Combat System Development, Computer Program
Development Plan, Naval Sea Systems Command, p. 1-2,
1985.

6. Mather, D., "One Person's Perception of Military
Documentation", AFIPS Conference Proceedings, vol. 53,
1984.

7. NBS Special Publication 500-87p Management Guide for
Software Documentation, National Bureau of Standards,
p. 12, 1982.

8. Tinq, T. C., "An Automated Tool for Proqram Desiqn
and Documentation", Proceeedings of the NBS FIPS
Software Documentation Workshop, NBS Special
Publication 500-94, p. 95, 1982.

9. O'Conners P.; Redwine, S. T., "Usinq FIPS Publication
36: A Practical Experience", Proceedings of the NBS
FIPS Software Documentation Workshop, NBS Special
Publication 500-94, p. 143, 1982.

64

- " - . . .

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virqinia 22304-6145

2. Library, Code 0142 2
Naval Postqraduate School
Monterey, California 93943-5100

3. Dr. Gordon H. Bradley, Code 52BZ 2
Department of Computer Science
Naval Postqraduate School
Monterey, California 93943-5100

4. Jim Raeqan 1
Naval Surface Weapons Center
Code N23
Dhalqren, Virqinia 22448

5. Dr. Carl R. Jones, Code 54JS 1
Department of Administrative Sciences
Naval Postqraduate School
Monterey, California 93943-5100

6. RADM. Harvey E. Lyon, USN (Ret.) 1
9210 Bayard Place
Fairfax, Virqinia 22032

7. Lt. Harvey C. Lyon, USN 1
9210 Bayard Place
Fairfax, Virqinia 22032

8. Computer Technoloqy Proqrams, Code 37 1
Naval Postqraduate School
Monterey, California 93943-5100

65

--
N '

FILMED

12-85

0

• " DTIC
o ...

